第14章
超弦理論の応用：補章

このファイルは「超弦理論の応用—物理諸分野でのAdS/CFT 双対性の使い方—」（サイエンス社 SGC ライブラリ）でページ数の都合から削愛した部分をまとめたものである。

14.1 RN ブラックホールの熱力学量の計算（3章）

ここでは、ライスナー-ハルドストリューム・ブラックホール（以下 RN ブラックホール）に対して分配関数を鞍点近似で評価し、熱力学量を求める。ユークリッド化した RN ブラックホール解は（$t_E = it$）

$$
\begin{align*}
 ds^2 &= f dt_E^2 + \frac{dr^2}{f} + r^2 d\Omega_2^2, \\
 f &= \left(1 - \frac{r_+}{r}\right) \left(1 - \frac{r_-}{r}\right) = 1 - \frac{r_0}{r} + \frac{r_+ r_-}{r^2}, \quad r_0 := r_+ + r_-, \\
 A_M dx^M &= i \frac{\sqrt{r_+ r_-}}{r} dt_E.
\end{align*}
$$

(14.1)

(14.2)

(14.3)

作用は形式的に2つの部分に分けられる：

$$
S_E = S_{\text{bulk}} + S_{\text{GH}}.
$$

(14.4)

ここで、$S_{\text{bulk}}, S_{\text{GH}}$ は、それぞれバルク作用、ギボンズ-ホーキング作用である（7.4節、11.4節）。

バルク作用

バルク作用は

$$
S_{\text{bulk}} = -\frac{1}{16\pi G_4} \int d^4 x \sqrt{g} (R - F^2).
$$

(14.5)
ギボンズ-ホーキング作用

\[ N^{-1} = f^{1/2}, \sqrt{\gamma} = f^{1/2}r^2 \sin \theta \] なので、ギボンズ-ホーキング作用は

\[ (\sqrt{\gamma} K = \partial_r \sqrt{\gamma}/N) \]

\[ S_{\text{GH}} = -\frac{2}{16\pi G_4} \int d^3 x \sqrt{\gamma} K \] (14.9)

\[ = -\frac{2}{16\pi G_4} \int dt d\theta d\phi f^{1/2} \left[ f^{1/2}r^2 \right] \left. \sin \theta \right|_{r=\infty} \] (14.10)

\[ = -\frac{\beta}{2G_4} f^{1/2} \left[ f^{1/2}r^2 \right] \left. \sin \theta \right|_{r=\infty} \] (14.11)

\[ \rightarrow r=\infty \frac{\beta}{2G_4} (-2r + \frac{3}{2} r_0) \] (14.12)

ギボンズ-ホーキング作用は発散する。

発散の処理

漸近的に平坦なブラックホールの場合、相殺作用 (7.52) を加えるという手法は使えない。かわりに、平坦な時空の自由エネルギーとの差を考える「レファレンス時空法」を使う（13.2節）。

平坦な時空の周期 \( \beta_0 \) は、ブラックホールの温度にあわせる。ただし、ブラックホールのホーキング温度 \( T \) にあわせるのではなく、半径 \( r \) での「固有温度」 (6.69) にあわせる：

\[ T(r) = \frac{T}{f^{1/2}} \to \beta_0 = \beta(r) = f^{1/2} \beta. \] (14.13)

平坦な時空に対しては、\( \sqrt{\gamma} K = 2r \sin \theta \) となり，
\[
S_{\text{flat}} = -\frac{2}{16\pi G_4} \int d^3x \sqrt{\gamma} K \tag{14.14}
\]
\[
= -\frac{2}{16\pi G_4} \int_0^{\beta(r)} dt \beta \int d\theta d\phi 2r \sin \theta \bigg|_{r=\infty} \tag{14.15}
\]
\[
= -\frac{\beta}{2G_4} 2r f^{1/2} \bigg|_{r=\infty} \tag{14.16}
\]
\[
r \to \infty \quad \frac{\beta}{2G_4} (-2r + r_0) \bigg|_{r=\infty} \tag{14.17}
\]

以上より，RN ブラックホールのグランドカノニカル・ポテンシャル \( \Omega \) は
\[
\Omega := \frac{S_E - S_{\text{flat}}}{\beta} = \frac{r_+ - r_-}{4G_4} \tag{14.18}
\]
となる。

化学ポテンシャルについての注意

10 章では化学ポテンシャルを \( \mu = A_t (r = \infty) \) と定義したが，正式には注意を要する。パルクのゲージ場にはゲージ不変性があるからである：
\[
A_M (x^\nu, r) \to A_M (x^\nu, r) + \partial_M \Lambda (x^\nu, r) \tag{14.19}
\]
通常 \( A_r = 0 \) のゲージをとるが，依然として
\[
A_\alpha (x^\nu, r) \to A_\alpha (x^\nu, r) + \partial_\alpha \Lambda (x^\nu) \tag{14.20}
\]
という不変性は残るので，\( \mu = A_t (r = \infty) \) という定義はゲージ不変ではない。
1. 通常使われるのは，
\[
A_t (r = r_+) = 0 \tag{14.21}
\]
とさらにゲージ固定をして \( \mu = A_t (r = \infty) \) を使う方法である。
2. あるいはゲージ不変な定義
\[
\mu = A_t (r = \infty) - A_t (r = r_+) \tag{14.22}
\]
を使ってもよい。

前者を使う場合，式 (14.3) のかわりに
\[
A_t = -\sqrt{r_+ r_-} \left( \frac{1}{r} - \frac{1}{r_+} \right), \tag{14.23}
\]
\[
\mu = \frac{1}{G_4} A_t (r = \infty) = \frac{1}{G_4} \sqrt{\frac{r_-}{r_+}}. \tag{14.24}
\]

ここで，化学ポテンシャルをニュートン定数でスケールしたのは，3.3.2 項で \([Q] = (\text{長さ})\) という次元をとったことに起因する。

*1） なお，式 (13.27) でも暗黙のうちにそうしている。
熱力学量

\( \Omega \) を本来の変数 \((T, \mu)\) で書きかえる。

\[
T = \frac{r_+ - r_-}{4\pi r_+^4}, \tag{14.25}
\]

\[
\mu = \frac{1}{G_4} \sqrt{\frac{r_-}{r_+}}, \tag{14.26}
\]

を使うと、

\[
\Omega = \frac{(1 - G_4^2 \mu^2)^2}{16\pi G_4 T}. \tag{14.27}
\]

これより、熱力学量は

\[
S = - \left( \frac{\partial \Omega}{\partial T} \right)_\mu = \frac{(1 - G_4^2 \mu^2)^2}{16\pi G_4 T^2} = \frac{\pi r_+^2}{G_4}, \tag{14.28}
\]

\[
Q = - \left( \frac{\partial \Omega}{\partial \mu} \right)_T = \frac{G_4 \mu (1 - G_4^2 \mu^2)}{4\pi T} = \sqrt{r_+} R, \tag{14.29}
\]

\[
M = \Omega + TS + \mu Q = \frac{r_+ + r_-}{2G_4}. \tag{14.30}
\]

なお、\((r_+, r_-)\) のままで計算するときは、たとえば \(\mu\) を固定しなければいけない。この場合、

\[
d\mu = \frac{\partial \mu}{\partial r_+} dr_+ + \frac{\partial \mu}{\partial r_-} dr_- = 0 \rightarrow dr_- = \frac{r_-}{r_+} dr_+. \tag{14.31}
\]

という条件が得られる。これを使うと、

\[
d\Omega = \frac{\partial \Omega}{\partial r_+} dr_+ + \frac{\partial \Omega}{\partial r_-} dr_- = \frac{1}{4G_4} (dr_+ - dr_-) = \frac{r_+ - r_-}{4G_4 r_+} dr_+. \tag{14.32}
\]

\[
dT = \frac{\partial T}{\partial r_+} dr_+ + \frac{\partial T}{\partial r_-} dr_- = -\frac{r_+ - r_-}{4\pi r_+^2} dr_+ \tag{14.33}
\]

したがって、

\[
S = - \left( \frac{\partial \Omega}{\partial T} \right)_\mu = \frac{\pi r_+^2}{G_4}. \tag{14.34}
\]

同様に、\(T\) 固定の場合は \(dT = 0\) から得られる \(dr_- = (2r_- - r_+) dr_+ / r_+\) を使えばよい。

### 14.2 閉じこめの簡単な例 (8 章)

本文では閉じこめ数のモデルとして、\(r = r_c\) で切りとった AdS 時空を考えたが、ここでは具体例として \(S^1\) コンパクト化した \(N = 4\) ゲージ理論と、対応する時空を取りあげる。
AdS ソリトン

SAdS_5 ブラックホールは

\[ ds^2_5 = \left( \frac{r}{L} \right)^2 \left[ -h dt^2 + dx^2 + dy^2 + dz^2 \right] + L^2 \frac{dr^2}{hr^2}, \quad (14.35) \]

\[ h = 1 - \left( \frac{r_0}{r} \right)^4, \quad (14.36) \]

で与えられた。z に対して z : 0 → l と S^1 コンパクト化する。ユークリッド時間方向も t_E : 0 → β = πL^2/r_0 と周期化されている。

しかし式 (14.35) は漸近的に R^{1,2} × S^1 である唯一の解ではない。

\[ z' = it, \quad z = it' \quad (14.37) \]

と「ダブル・ウィック回転」した解

\[ ds^2 = \left( \frac{r}{L} \right)^2 \left[ -dt'^2 + dx^2 + dy^2 + h dz'^2 \right] + L^2 \frac{dr^2}{hr^2} \quad (14.38) \]

も同じ漸近構造をもつ。式 (14.38) を「AdS ソリトン」解と言う。

どちらもユークリッド幾何としては同じ時空だが、時間方向の S^1 と空間方向の S^1 が入れ替わっている。ユークリッド化すると、この点まではわからない。AdS ソリトンはブラックホールではない。むしろ ds^2 に近い因子 h のため、ユークリッド化したブラックホール同様、時空が r = r_0 で終わっている。8 章の議論から、この時空は閉じこめ相をあらわす。

AdS ソリトンの場合、t' の周期は任意に取れるが、SAdS ブラックホールと比べるため t_E : 0 → β とする。一方、ホーキング温度導出の議論と同じ理由で、z' の周期 l に

\[ l = \frac{\pi L^2}{r_0} \quad (14.39) \]

と条件がつることになる。

AdS ソリトンに対して、x 方向のクォーク・ボテンシャルを考える。ウィルソン・ループとしては、t'-x 平面上のループである。公式 (8.20) を使うと、時空は r = r_0 で終わるので、

\[ E_{t'x} \propto \sqrt{-g_{t't'}g_{xx}}|_{r_0} \mathcal{R} = \left( \frac{T_0}{L} \right)^2 \mathcal{R} \quad (14.40) \]

と閉じ込めボテンシャルが生じる。

なお、8.2 節では SAdS ブラックホールでのウィルソン・ループを使って、デバイ遮蔽を議論した。ユークリッド幾何としては同じ時空ではあるが、ここで compositions を考えているウィルソン・ループが違うことに注意しよう。

- AdS ソリトンの立場で、t'-x 平面上のウィルソン・ループ（“temporal Wilson loop”）は、ブラックホールの立場では、x-z 平面上のウィルソン・ループ（“spatial Wilson loop”）に相当する。

14.2 閉じ込めの簡単な例（8 章）
閉じ込め/非閉じ込め転移

7.4 節で計算したように、SAdS ブラックホールの自由エネルギーは、

\[ F_{BH} = -\frac{V_3}{16\pi G_5} \frac{r_0^4}{L^5} = -\frac{V_3 L^3}{16\pi G_5} \pi^4 T^4 \]  （14.41）

である。ユークリッド幾何は同じなので、AdS ソリトンの自由エネルギーも同じ表式で与えられるが、\( T \) の役割を果たすのが 1/\( l \) であることに注意すると、

\[ F_{soliton} = -\frac{V_3}{16\pi G_5} \frac{r_0^4}{L^5} = -\frac{V_3 L^3}{16\pi G_5} \pi^4 \frac{l^4}{T^4} \]  （14.42）

自由エネルギーの差は、

\[ \Delta F = F_{BH} - F_{soliton} = -\frac{V_3 L^3}{16\pi G_5} \pi^4 \left( T^4 \frac{1}{l^4} \right) \]  （14.43）

したがって、

- \( T < 1/l \)：AdS ソリトが安定な状態で、閉じ込め相をあらわす。
- \( T > 1/l \)：ブラックホールが安定な状態で、非閉じ込め相をあらわす。

AdS ソリトンはブラックホールではないので、エントロピーをもたない（ブラックホールと比べると、1/N^2 のオーダーという意味）。これは閉じ込め相として適切でもあるが、このことは 1 次相転移も意味する。また、コンパクトな空間上で相転移という意味で、13.2 節のホーキング・ページ転移に似ている。

14.3 そのほかの時空の詳細（10 章）

14.3.1 SAdS_{p+2} ブラックホール

\( p+2 \) 次元のシュワルツシルド AdS ブラックホール（プラナー・ホライズン）は

\[ S = \frac{1}{16\pi G_{p+2}} \int d^{p+2}x \sqrt{-g} (R - 2\Lambda) \]  （14.44）

\[ 2\Lambda = -\frac{p(p+1)}{L^2} \]  （14.45）

の解であり、

\[ ds_{p+2}^2 = -f dt^2 + \frac{dr^2}{f} + \left( \frac{r}{L} \right)^2 dx_p^2 \]  （14.46）

\[ f = \left( \frac{r}{L} \right)^2 \left\{ 1 - \left( \frac{r_0}{r} \right)^{p+1} \right\} \]  （14.47）

熱力学量は、
\[ T = \frac{p+1}{4\pi L^2} r_0, \quad (14.48) \]
\[ s = \frac{1}{4G_{p+2}} \left( \frac{r_0}{L} \right)^p, \quad (14.49) \]
\[ \varepsilon = \frac{p}{16\pi G_{p+2}L} \left( \frac{r_0}{L} \right)^{p+1}, \quad (14.50) \]
\[ P = \frac{1}{16\pi G_{p+2}L} \left( \frac{r_0}{L} \right)^{p+1} = \frac{1}{p} \varepsilon. \quad (14.51) \]

14.3.2 RN-AdS ブラックホール

RN-AdS ブラックホール（プラナー・ホライズン）は
\[ S = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left( R - 2\Lambda - \frac{L^2}{4} F^2 \right). \quad (14.52) \]
の解であり,
\[ ds_5^2 = -fdt^2 + \frac{dr^2}{f} + \left( \frac{r}{L} \right)^2 dx_3^2, \quad (14.53) \]
\[ f = \left( \frac{r}{L} \right)^2 \left\{ 1 - \left( \frac{r_+}{r} \right)^2 \right\} \left\{ 1 - \left( \frac{r_-}{r} \right)^2 \right\} \left\{ 1 + \frac{r_+^2 + r_-^2}{r^2} \right\}, \quad (14.54) \]
\[ A_t = -\frac{r_+}{L^2} \sqrt{3\alpha (1 + \alpha^2)} \left( \frac{r_+^2}{r^2} - 1 \right), \quad (14.55) \]
\[(\alpha := r_+/r_-)。ホライズンは r = r_+, r_- である。熱力学量は、\]
\[ T = \frac{r_+}{2\pi L^2} (2 - \alpha^2 - \alpha^4), \quad (14.56) \]
\[ \Omega = -\frac{V_3}{16\pi G_5 L} \left( \frac{r_+}{L} \right)^4 (1 + \alpha^2 + \alpha^4), \quad (14.57) \]
\[ s = -\frac{1}{V_3} \frac{\partial \Omega}{\partial T} \Big|_{\gamma_5, \mu} = \frac{1}{4G_5} \left( \frac{r_+}{L} \right)^3, \quad (14.58) \]
\[ \mu = A_t \Big|_{r \to \infty} = \frac{r_+}{L^2} \sqrt{3\alpha (1 + \alpha^2)}, \quad (14.59) \]
\[ \rho = -\frac{1}{V_3} \frac{\partial \Omega}{\partial \mu} \Big|_{\gamma_5, V_3} = \frac{1}{8\pi G_5} \left( \frac{r_+}{L} \right)^3 \sqrt{3\alpha (1 + \alpha^2)}, \quad (14.60) \]
\[ \varepsilon = \frac{\Omega}{V_3} + Ts + \mu \rho = \frac{3}{16\pi G_5 L} \left( \frac{r_+}{L} \right)^4 (1 + \alpha^2 + \alpha^4), \quad (14.61) \]
\[ P = -\frac{\Omega}{V_3} = \frac{1}{3} \varepsilon. \quad (14.62) \]

RN-AdS_4 ブラックホール（プラナー・ホライズン）は
\[ ds_4^2 = -fdt^2 + \frac{dr^2}{f} + \left( \frac{r}{L} \right)^2 dx_2^2, \quad (14.63) \]
\[ f = \left( \frac{r}{L} \right)^2 \left( 1 - \frac{r_+}{r} \right) \left( 1 - \frac{r_-}{r} \right) \left( 1 + \frac{r_+^2 + r_-^2 + r^2}{r^2} \right), \quad (14.64) \]
\[ A_t = -\frac{2r_+}{L^2} \sqrt{\alpha (1 + \alpha^2)} \left( \frac{r_+}{r} - 1 \right), \quad (14.65) \]
\[(\alpha := r_+/r_-)。熱力学量は、\]
\[ T = \frac{r_+}{4\pi L^2} (3 - \alpha - \alpha^2 - \alpha^3), \quad (14.66) \]
\[ \Omega = -\frac{V_2}{16\pi G_4 L} \left( \frac{r_+}{L} \right)^2 (1 + \alpha + \alpha^2 + \alpha^3), \quad (14.67) \]
\[ s = -\frac{1}{8\pi G_4} \left( \frac{\partial \Omega}{\partial T} \right) \left( \frac{r_+}{L} \right)^2, \quad (14.68) \]
\[ \mu = A_4 |_{r \to \infty} = \frac{2r_+}{L^2} \sqrt{\alpha(1 + \alpha + \alpha^2)}, \quad (14.69) \]
\[ \rho = -\frac{1}{8\pi G_4} \left( \frac{\partial \Omega}{\partial \mu} \right)_{T, V_2} = \frac{1}{12} \sqrt{\alpha(1 + \alpha + \alpha^2)}, \quad (14.70) \]
\[ \varepsilon = \frac{\Omega}{V_2} + Ts + \mu \rho = \frac{1}{8\pi G_4 L} \left( \frac{r_+}{L} \right)^2 (1 + \alpha + \alpha^2 + \alpha^3), \quad (14.71) \]
\[ P = -\frac{\Omega}{V_2} = \frac{1}{2} \varepsilon. \quad (14.72) \]

14.3.3 M プレーン

ゼロ温度の場合

M2 プレーンは

\[ ds_{11}^2 = f_2^{2/3} (-dt^2 + dx_1^2 + dx_2^2) + f_2^{1/3} (dr^2 + r^2 d\Omega_2^2), \quad (14.73) \]
\[ f_2 = 1 + \left( \frac{r_2}{r} \right)^6. \quad (14.74) \]

5.4 節と同様、\( r \ll r_2 \) の near-horizon 極限では

\[
 ds_{11}^2 \rightarrow \left( \frac{r}{r_2} \right)^4 (-dt^2 + dx_1^2 + dx_2^2) + \left( \frac{r_2}{r} \right)^2 (dr^2 + r^2 d\Omega_2^2) 
\]
\[
 = \left( \frac{2r}{r_2} \right)^2 (-dt^2 + dx_1^2 + dx_2^2) + \left( \frac{r_2}{2} \right)^2 \frac{dr^2}{r^2} + r_2^2 d\Omega_2^2. \quad (14.75)
\]

\[ r = (2r_2)^{1/2} \) とした。AdS 半径 \( L = r_2/2 \) の AdS_4 \times \mathbb{S}^7 に帰着する。ただし D3 プレーンとは異なり、\( S^7 \) の半径 \( L_{S^7} = L_5 = r_2 \) で与えられる。

M5 プレーンは

\[ ds_{11}^2 = f_5^{1/3} (-dt^2 + dx_3^2) + f_5^{2/3} (dr^2 + r^2 d\Omega_4^2), \quad (14.77) \]
\[ f_5 = 1 + \left( \frac{r_5}{r} \right)^3. \quad (14.78) \]

near-horizon 極限では

\[
 ds_{11}^2 \rightarrow \left( \frac{r}{r_5} \right) (-dt^2 + dx_3^2) + \left( \frac{r_5}{r} \right)^2 (dr^2 + r^2 d\Omega_4^2) 
\]
\[
 = \left( \frac{2r}{2r_5} \right)^2 (-dt^2 + dx_3^2) + 2r_5^2 \frac{dr^2}{r^2} + r_5^2 d\Omega_4^2. \quad (14.79)
\]

\[ r = r^2/\left(2r_5\right) \) とした。AdS 半径 \( L = r_5 \) の AdS_7 \times S^4 に帰着する。ただし \( S^4 \) の半径 \( L_{S^4} = L_7 = r_5 \) で与えられる。
AdS/CFT 詞書
M ブレーンの AdS/CFT 詞書の作り方は、5.4 節の D3 の場合と同様である。M2 の場合、ブレーンに垂直な空間次元は 8 である。したがって、ニュートン・ポテンシャルは空間 3 次元の $GM/r$ のかわりに、$G_{11}T_2/r^6$ となる。次元解析と $N_c$ 枚のブレーンがあることから、

$$ r_2^6 \simeq G_{11}T_2 \simeq N_c l_{11}^6, \quad (14.81) $$

$$ G_{11} =: l_{11}^6. \quad (14.82) $$

ここで $l_{11}$ は 11 次元ブランク長さである。超弦理論では、ストリング長さ $l_s$ という基盤的なスケールがあり、ブランク長さ $l_0$ は $l_s$ で $l_0^8 \simeq g_{st}^2 l_s^8$ と与えられる。しかし、11 次元の場合、$l_s$ に相当するスケールがあるか不明なので、$l_{11}$ を使う。これらの関係から、

$$ \frac{r_2^6}{G_{11}} \simeq N_c^{3/2}. \quad (14.83) $$

これは D3 の場合、式 (5.42) の第 1 式に相当する式である。

M5 ブレーンの場合、ブレーンに垂直な空間次元は 5 である。したがって、ニュートン・ポテンシャルは $G_{11}T_5/r^3$ となり、

$$ r_5^3 \simeq G_{11}T_5 \simeq N_c l_{11}^3. \quad (14.84) $$

したがって、

$$ \frac{r_5^3}{G_{11}} \simeq N_c^3. \quad (14.85) $$

式 (14.83), (14.85) を係数まで注意してまとめたものは、

$$ N_c^{3/2} = \frac{\sqrt{2}\pi^5(2L)^9}{16\pi G_{11}} \quad \text{(M2)}, \quad N_c^3 = \frac{\pi^5L^9}{2 \cdot 16\pi G_{11}} \quad \text{(M5)}. \quad (14.86) $$

有限温度の場合
有限温度の場合、M2 ブレーンは

$$ ds_{11}^2 = f_2^{-2/3}(-h dt^2 + dx_1^2 + dx_2^2) + f_2^{1/3}(h^{-1}dr^2 + r^2 d\Omega_5^2), \quad (14.87) $$

$$ h = 1 - \left( \frac{r_0}{r} \right)^6 = 1 - \left( \frac{\tilde{r}_0}{\tilde{r}} \right)^3. \quad (14.88) $$

M5 ブレーンは、

$$ ds_{11}^2 = f_5^{-1/3}(-h dt^2 + dx_1^2) + f_5^{2/3}(h^{-1}dr^2 + r^2 d\Omega_7^2), \quad (14.89) $$

$$ h = 1 - \left( \frac{r_0}{r} \right)^3 = 1 - \left( \frac{\tilde{r}_0}{\tilde{r}} \right)^6. \quad (14.90) $$

$\tilde{r}_0 < \tilde{r} \ll L$ の near-horizon 極限で、M2, M5 はそれぞれ SAdS₄, SAdS₇ ブラ
ラックホールに帰着する。熱力学量は、シュワルツシルド AdS ブラックホールの結果（14.3.1 節）をそのまま用いればよい。

M2 プレーンの場合,
\[
s = \sqrt{2} \left( \frac{2}{3} \right)^3 \pi^2 N_c^{3/2} T^2, \tag{14.91}
\]
\[
\varepsilon = \sqrt{2} \left( \frac{2}{3} \right)^4 \pi^2 N_c^{3/2} T^3. \tag{14.92}
\]

M5 プレーンの場合,
\[
s = 2 \left( \frac{2}{3} \pi \right)^6 N_c^3 T^5, \tag{14.93}
\]
\[
\varepsilon = \frac{5}{3} \left( \frac{2}{3} \pi \right)^6 N_c^3 T^6. \tag{14.94}
\]

14.3.4 Dp プレーン

ゼロ温度の場合

Dp プレーンは
\[
ds_{10}^2 = Z_p^{-1/2}(-dt^2 + dx_p^2) + Z_p^{1/2}(dr^2 + r^2 d\Omega^2_{8-p}), \tag{14.95}
\]
\[
e^{-2\phi} = Z_p^{(p-3)/2}, \tag{14.96}
\]
\[
Z_p = 1 + \left( \frac{r_p}{r} \right)^{7-p}. \tag{14.97}
\]

\(p \neq 3\) のとき、ディラトン \(\phi\) がノントリビアルな振るまいをする。\(p = 3\) では、ディラトンは定数なのでこれまで考慮してこなかった。

near-horizon 極限では,
\[
ds_{10}^2 \to \left( \frac{r}{r_p} \right)^{(7-p)/2} (-dt^2 + dx_p^2) + \frac{dr^2}{\left( \frac{r}{r_p} \right)^{(7-p)/2}}
\]
\[
+ r_p^2 \left( \frac{r}{r_p} \right)^{(p-3)/2} d\Omega^2_{8-p}. \tag{14.98}
\]

AdS/CFT 論書

5.4 節の D3 の場合と同様である。係数まで注意してまとめたものは,
\[
16\pi G_{10} = (2\pi)^7 g_s^2 R^8, \tag{14.99}
\]
\[
r_p^{7-p} = \frac{(2\pi)^7-p}{(7-p)\Omega_{8-p}} g_s N_c \theta_{7-p}, \tag{14.100}
\]
\[
2(2\pi)^{p-2} g_s \theta_{p-3} = g_{YM}^2. \tag{14.101}
\]

\(p = 3\) のとき、式 (14.99)-(14.101) は D3 プレーンの場合の式 (5.42) に帰着する。また、式 (14.101) の \(l_n\) 依存性は、\((p + 1)\) 次元のゲージ理論では \(g_{YM}\) が次元をもつことを反映している。
有限温度の場合
有限温度では、

\[ ds_{10}^2 = Z_0^{-1/2}(-dhdt^2 + dx_i^2) + Z_0^{1/2}(h^{-1}dr^2 + r^2d\Omega_8^2) , \]  

\[ h = 1 - \left(\frac{r_0}{r}\right)^{7-p}. \]  

near-horizon極限での熱力学量は、

\[ T = \frac{7 - p}{4\pi} \frac{r_0^{(5-p)/2}}{r_p^{(7-p)/2}}, \]  

\[ s = e^{-2\phi} \frac{a}{4G_{10}} \frac{1}{r_p^{5/2}} \Omega_{8-p-r_0}(r_p)^{(7-p)/2}r_0, \]  

\[ \varepsilon = \frac{9 - p}{32\pi G_{10}} \frac{\Omega_{8-p}}{r_0^{7-p}}, \]  

\[ C = \frac{9 - p}{4G_{10}(5-p)} \frac{1}{r_p^{7-p}} (r_p r_0)^{(7-p)/2} r_0. \]  

比熱は \( p = 5 \) で発散、\( p > 5 \) で負になるので、以下では \( p < 5 \) を考える。なお、ディラトンはニュートン定数の働きをすることから（5.2.4節）、エントロピーの面積則は

\[ s = e^{-2\phi} \frac{a}{4G_{10}} \bigg|_{r=r_0} \]  

となる。

ゲージ理論の変数で書き直すと、たとえばエネルギー密度は

\[ \varepsilon \propto (g_{YM} N_c)^{(p-3)/(5-p)} N_c^2 T^{2(7-p)/(5-p)}. \]  

Dp ブレーンと M ブレーンの関係

熱力学量は、\( p = 1 \) で \( \varepsilon \propto N_c^{3/2}T^3 \) となり、M2 ブレーンの振るまいと同じである。同様に、\( p = 4 \) で \( \varepsilon \propto N_c T^6 \) となり、M5 ブレーンの振るまいと一致する。これらの振るまいは偶然ではない。一部の D ブレーンは、11 次元の M ブレーンに起源をもつからである（図 14.1）。ここでは詳細に議論しないが、たとえば

• M5 でブレーン方向を \( S^1 \) コンパクト化したものが、10 次元タイプ IIA 超弦理論の D4 ブレーンである。
• M2 でブレーン方向を \( S^1 \) コンパクト化したものが、10 次元タイプ IIA 超弦理論のストリングである。このストリングは、T 双対性によりタイプ IIB 超弦理論のストリングになり、さらに S 双対性を使うタイプ IIB 超弦理論の D1 ブレーンになる。
このため、D ブレーンの near-horizon 極限も、M ブレーンの near-horizon 極限と関係する。実際、式 (14.98) は

\[
ds^2_{10} \to \left( \frac{r}{r_p} \right)^{(p-3)/2} \left\{ \left( \frac{r}{r_p} \right)^{5-p} \left( -\frac{hdt^2 + dx_p^2}{h} \right) + \frac{dr^2}{(\tilde{r}_p)^2} + r_p^2d\Omega_{8-p}^2 \right\}
\]

(14.110)

と書き替えられるが、座標変換

\[
\frac{r}{r_p} = \left( \frac{2}{5-p} \tilde{r} \right)^{2/(5-p)} \ , \quad \frac{r_0}{r_p} = \left( \frac{2}{5-p} \tilde{r}_0 \right)^{2/(5-p)}
\]

(14.111)

をとると、式 (14.110) の \{ \} 内は

\[
\left( \frac{2}{5-p} \right)^2 \to \left( \frac{\tilde{r}}{r_p} \right)^2 \left( -\frac{hdt^2 + dx_p^2}{h} \right) + \frac{d\tilde{r}^2}{(\tilde{r}_p)^2} + r_p^2d\Omega_{8-p}^2 \quad (14.112)
\]

\[
h = 1 - \left( \frac{\tilde{r}_0}{\tilde{r}} \right)^{2(7-p)/(5-p)} \quad .
\]

(14.113)

\( p = 1 \) のとき \( h = 1 - (\tilde{r}_0/\tilde{r})^3 \) となり、上の計量はブラナー SAdS_4 をブレーン方向に沿って \( S^1 \) コンパクト化したものと一致する。（ブラナー SAdS_4 で、ブレーン方向の一つを単に無視すればよい。）同様に、\( p = 4 \) のとき \( h = 1 - (\tilde{r}_0/\tilde{r})^6 \) となり、ブラナー SAdS_7 をブレーン方向に沿って \( S^1 \) コンパクト化したものと一致する。